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scale version of the population” is the encompassing image. This conception
entails images of repeating the sampling process and an image of variability
among its outcomes that supports reasoning about distributions. In contrast,
a sample may be viewed simply as "a subset of a population"--an encompassing
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We distinguish two conceptions of sample and sampling that emerged in the context
of a teaching experiment conducted in a high school statistics class. In one conception
“sample as a quasi-proportional, small-scale version of the population” is the encom-
passing image. This conception entails images of repeating the sampling process and
an image of variability among its outcomes that supports reasoning about distribu-
tions. In contrast, a sample may be viewed simply as “a subset of a population”- an
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encompassing image devoid of repeated sampling, and of ideas of variability that
extend to distribution. We argue that the former conception is a powerful one to target
for instruction.

Background

On the basis of empirical evidence Kahneman and Tversky (1972) hypothesized
that people often base judgments of the probability that a sample will occur on the
degree to which they think the sample “(i) is similar in essential characteristics to
its parent population; and (ii) reflects the salient features of the process by which it
is generated” (p. 430). This hypothesis suggests that Kahneman and Tversky’s sub-
jects focused their attention on individual samples. In later research, Kahneman and
Tversky (1982) conjectured that people, indeed, tend to take a singular rather than a
distributional perspective when making judgments under uncertainty. In the former,
one focuses on the causal system that produced the particular outcome and assesses
probabilities “by the propensities of the particular case at hand” (p. 517). In contrast,
the distributional perspective relates the case at hand to a sampling schema and views
an individual case as “an instance of a class of similar cases, for which relative fre-
quencies of outcomes are known or can be estimated” (p. 518).

Konold (1989) found strong empirical support for Kahneman and Tversky’s
(1982) conjecture. He presented compelling evidence that people, when asked ques-
tions that are ostensibly about probability, instead think they are being asked to predict
with certainty the outcome of an individual trial of an experiment. Konold character-
ized this orientation, which he referred to as-the outcome approach, as entailing a
tendency to base predictions of uncertain outcomes on causal explanations instead of
on information obtained from repeating an experiment.

Sedlmeier and Gigerenzer (1997) analyzed several decades of research on under-
standing the effects of sample size in statistical prediction. They argued compellingly
that subjects across a diverse spectrum of studies who incorrectly answered tasks
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1306 Probability and Statistics

involving a distribution of sample statistics may have interpreted task situations and
questions as being about individual samples.

Recent instructional studies (delMas, Garfield, & Chance, 1999; Sedlmeier,
1999) indicated that engagement in carefully designed instructional activities using
computer simulations of drawing many samples can help orient students’ attention to
collections of sample statistics when making judgments involving samples. However,
analyses in these studies did not focus on characterizing students’ evolving concep-
tions and imagery in relation to their engagement in instruction.

Despite the centrality of variability in statistics, students’ understanding of
sampling variability and our comprehension of variability’s role as a central organiz-
ing idea in statistics instruction has received little research attention (Shaughnessy,
Watson, Moritz, & Reading, 1999). Rubin, Bruce, and Tenney (1991) proposed that a
coherent understanding of sampling and inference entails integrating ideas of sample
representativeness and sampling variability to reason about distributions. Images of
the re-sampling process, however, were not at the foreground of their conceptual
analysis. Other conceptual analyses of sampling (Schwartz, Goldman, Vye, & Barron,
1998; Watson & Moritz, 2000) characterized the relationship between population and
arandomly selected subset of it in a way that did not entail images of the repeatability
of the sampling process nor of the variability that we can expect among sample out-

@ comes. @

In sum, substantial evidence from research on understanding samples and
sampling suggests that students tend to focus on individual samples and statistical
summaries of them instead of on how collections of sample statistics are distributed.
Furthermore, students may tend to predict a sample’s outcome on the basis of causal
analyses instead of statistical patterns in a collection of sample outcomes. These orien-
tations are problematic for learning statistical inference because they disable students
from considering the relative unusualness of a sampling process’ outcome. Finally,
sampling has not been characterized in the literature as an interrelated scheme of ideas
entailing repeated random selection, variability, and distribution.

Purpose and Methods

This study investigated the development of students’ thinking as they participated
in instruction designed to support their conceiving sampling as a scheme of interre-
lated ideas including repeated random selection, variability among sample statistics,
and distribution.

Twenty-seven 11®- and 12%-grade students, enrolled in a non-AP semester-long
statistics course, participated in a 9-session whole-class teaching experiment (TE)
addressing ideas of sample, sampling distributions, and margins of error. Our aim was
to develop epistemological analyses of these ideas (von Glasersfeld, 1995; Steffe &
Thompson, 2000; Thompson & Saldanha, 2000) — ways of thinking about them that
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are schematic, imagistic, and dynamic — and hypotheses about their development in
relation to students’ engagement in classroom instruction.

Three research team members were present in the classroom during all lessons:
one author designed and conducted the instruction; the other author observed the
instructional sessions and took field notes; a third member operated the video cameras.
Students’ understandings were investigated in three ways: by tracing their participa-
tion in classroom discussions (all instruction was videotaped), by examining their
written work, and by conducting post-experiment individual interviews.

Instruction stressed two overarching and related themes: 1) the random selection
process can be repeated, and 2) judgments about sampling outcomes can be made
on the basis of relative frequency patterns that emerge in collections of outcomes
of similar samples.! These themes were intended to support students’ developing a
distributional interpretation of sampling and likelihood. Though an a priori outline of
the intended teaching and learning trajectories (Simon, 1995) guided the progress of
the teaching experiment, the research team made on-line adjustments to instruction
according to what they perceived as important issues that arose for students in each
session.

The teaching experiment unfolded in three interrelated phases: it began with
directed discussions centered on news reports that mentioned data about sampled

@ populations and news reports about populations per se (raising the issue of sampling @
variability). The experiment then progressed to questions of “what fraction of the time
would you expect results like these?” This entailed having students employ, describe
the operation of, and explain the results of computer simulations of taking large num-
bers of samples from various populations with known parameters (see Figure 1).
[insert Figure 1 here]

The experiment ended by examining simulation results systematically, with the
aim that students see that distributions of sample proportions are largely unaffected by
underlying population proportions (see Figure 2), but are affected in important ways
by sample size.

Results and Discussion

In this report we move toward elaborating an important distinction between two
conceptions of samples and sampling that emerged in the teaching experiment. Our
analyses revealed that some students — generally those who performed better on the
instructional activities and those who were able to hold coherent discourse about the
mathematical ideas highlighted in instruction — had developed a multi-tiered scheme
of conceptual operations centered around the images of repeatedly sampling from a
population, recording a statistic, and tracking the accumulation of statistics as they
distribute themselves along a range of possibilities. These images and operations were
tightly aligned with those promoted in classroom instructional tasks and discussions.
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:selection-item “people™
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:assume-actual-fraction .3)
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Explain what each number stands for
in the command we have been using
to instruct the computer to simulate
drawing random samples from a popu-
lation of soda drinkers.

Explain what information we will get
after having run the simulation (with
the values provided above).

What result do you expect the simula-
tion will produce (with these values
provided above)? Please justify your

3 1} g i  grinker : e F. a8

An experiment

- | selected 300 people atrandomfrom a
population of which .3 of it prefers Pepsl

- I repeated this 4500 times

- 314 of these 4500 repetitions had at least
35 of the people preferring Pepsi

{Ec-userT el Tr

ST

Interpret the simulation’s output
above.

How does your prediction compareto
the result produced by the simula-
tion?

Are they significantly different?

Are you surprised by this difference?
What might account for the differ-
ence?

What fraction of the time would you
expect results like these?

@ answer.

Figure 1. Part of an instructional activity designed to help students make sense of
computer simulations of drawing many random samples from a population. Simula-
tion input (left) and output (right) windows were displayed in the classroom and the
instructor posed questions designed to orchestrate reflective discussions about the

simulations.

As such, we conjecture that these students’ engagement in the instructional activities
played an important role in their developing such a scheme. For instance, we had stu-
dents practice imagining and describing a coordinated multi-level process that gives
rise to sampling distributions (and to the simulations’ results):
Level 1: Randomly select items to accumulate a sample of a given size from a
population. Record a samplestatistic of interest.
Level 2: Repeat Level 1 process a large number of times and accumulate a col-
lection of statistics.
Level 3: Partition the collection in Level 2 to determine what proportion of statis-
tics lie beyond (below) a given threshold value.

In classroom discussions the instructor employed a metaphor designed to help
students distinguish and coordinate these different levels. The metaphor entails imag-

@ 9/27/02, 12:54:14 PM '

_\ | PME Probability & Stats 1308
BEST COPY AVAILABLE

ERIC 5

Aruitoxt provided by Eic:



[TT 111 @

ey

Levets Counts
Heve is e table simihar % cur we fod out inan ba-clam activily: 024000000 3
T e [hawd [Fawd [Fdoars  [Rdhay  [Rodbap  [Rohan 800 025000000 2
Tub Fepkas B 026000000 9
roputin | tangle e 1 Arersnge A 3 Pramp ey 027000000 42
Poius of Ports ol Paiis of 9
Ppstn® frouin® Pk |poasinn 600 028000000 103
gu 0 2390 WIN 213 240% 3158 029000000 214
3% ] 000 1% (153 3on XT3 100 030000000 368
EX ) 00 —ixﬁm—1 (ZFL] (1K} 031000000 502
13 £ 5300 261% ] 3.3 ik ¢32000000 612
033000000 478
) Bxplam what "% of S ample Peicents wttun  Percentsge Podnts of Popriston % “meaxs, 200 03000000 348
b) Whal do youmfer fiom Bistable (Bt i truz abeut e iocess of Wang § Ladom aample 035000000 179
) peager et P e T A 036000000 78
037000000 33
© Wt does s xupgest abouta seationship betweeh sxmple stz ancl G perce itof 024 027 030 033 Q36 Q3 0.38000000 7
Sarples wiThia cermin pecenmgs poxs of 4 popubition pestend? Percant of Yo in a Samgta 0.35000000 &
3000 Samptes of £00 ach takrm from « popaiitian haviag 32 of # believing “yer*

Figure 2. Part of an instructional activity designed to structure students’ investiga-
tion of the relationship between sampling distributions and underlying population
proportions. Students filled out the table on the left by organizing information (like
that shown on the right) generated by computer simulations of drawing many random
samples from populations with given proportions.

ining a collected sample of dichotomous opinions (“yes” or “no”) in Level 1 as a box
containing “1”’s (for “yes”) and “0”’s (for “no”). It then entails labeling the box with a
“1” (or a “0”) if the proportion of its contents is greater (or less) than a given threshold
@ value. In this metaphor, what accumulates in Level 2 is a collection of “1”’s and “0”’s @
(or boxes/slips of paper labeled “1”* or “0”"), each of which represents a sample whose
statistic is greater (less) than the threshold value. At Level 3, the metaphor entails
calculating the percent of the collection of “1”’s and “0”s in Level 2 that are ““1” or that
are “0”, depending on the required comparison.

The following excerpt illustrates one student’s coherent image of the multi-tiered
sampling process, the development of which appeared to have been facilitated by his
use of this metaphor. We take this student’s coherent image as an expression of the
stable scheme of conceptual operations characterized above. In the excerpt, the student
(D) interpreted a sampling simulation’s command and the result of running it as he
viewed familiar simulation windows on a computer screen (see Figure 1)*:

D: Ok. It’s asking...the question is...like “do you like Garth Brooks”. You’re
gonna go out and ask 30 people, it’s gonna ask 30 people 4500 times if they
like Garth Brooks. The uh...(talks to himself) what’s this? let’s see...the
actual...like the amount of people who actually like Garth Brooks are...or 3
out of 10 people actually prefer like Garth Brooks’ music. And uh...for the
30...when you go out and take one sample of 30 people, the cut off fraction
means that if you’re gonna count, you’re gonna count that sample, if like 37%
of the 30 people preferred Garth Brooks. And then it’s going to tally up how
many of the samples had 37% people that preferred Garth Brooks. So like the
answer would be I don’t know, like whatever, 2000 out of 4500 samples had
at least 37% of people preferring Garth Brook.

——‘ | PME Probability & Stats 1309 @ 9/27/02, 12:54:17 PM I ’7
El{llC 8 BEST COPY AVAILABLE

Aruitoxt provided by Eic:



0

1310 Probability and Statistics

I How was it that you thought about it that allowed you to keep things straight?
[...]

D: I just thought of it like ... I don’t know, I sort of thought of it like how you
were saying. Like...if the like 1s and the Os if you ask 30 uh if like 10 of them
say they like Garth Brooks-- or for every person who likes Garth Brooks you
put a 1 down, if they don’t you put a zero. You do that 30 times and you’re
gonna get like I don’t know, 15 ones and 15 zeros you add up, you add them
up. Then it says the cutoff fraction for each sample is 37% so you have like at
least 37% of the...like those or...30-- if you add it up and divided it by the 30
and it’s at least 37% then you have like another pile of like little papers and
you put a one on like the big, the big one for the sample or a zero if it’s less
than-- if the whole sample is less than 37%. The 1s and Os I don’t know...you
said something about like...that sort of helped.

A significant feature of student D’s thinking was his ability to clearly distinguish
different levels of the resampling processes — never confounding the number of
people in a sample with the number of samples taken — while coordinating the vari-
ous levels into a structured whole. Additionally, and relatedly, student D interpreted

@ the result of the simulation as an amount (percentage) of sample proportions, thus
suggesting that he understood that the multi-level process generated a collection of

sample proportions.>

Student D’s coherent image contrasts sharply with that of many poorer-perform-
ing students who persistently confounded numbers of people in a sample with num-
bers of samples drawn. The following interview excerpt illustrates one such student’s

(M) difficulties in the context of explaining similar computer simulations:

Segment 1

I: Ok, Suppose that, here’s what I'm gonna do, uhh instead of 4500 samples I'm
gonna take uhh, 1000 samples. Everything’s gonna stay the same — sample
size is 30, population fraction is 3/10ths, but now were’ just taking 1000
samples. What would you expect the results to be?

[...]
M: Uhh, somewhere around like (short silence), hmm around like 25-30% of
those 1000 samples.

Why 25-30%?

M: Because it’s uhh...easier to uhh, I mean

D

D

What are you basing that judgment on?
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M: Uhh, the actual population percentage, of 30

b—

0k, so you figure it’ll be about 30%, 25 to 30, because the population fraction
is 30%?

M: Yeah, somewhere close to that.
[...]
Segment 2

I:  Alright (runs simulation, result displayed on output screen is “189 of these
1000 repetitions ...”)

2/10ths, 20%. Hmm, it’s still a little less
So it’s a little less than 20%, right?

SRR

: Hmm hmm, huh (seems surprised)
[...]
Segment 3

I:  Alright. Suppose that now we, let’s do this, let’s make 2500 samples (changes
parameter value in command window). What fraction of those samples, I
@ mean what result would you now expect, for the number of samples that @
we’re going to get that exceed 37% preferring Garth Brooks?

M: About 1/5 of those.
[...]

I: Now, before you would have said “well, 3/10ths of the 2500 samples, the
2500 repetitions”

M: Hmm hmm

b

Do you still sort of lean that way, that you should get around 3/10ths of the
--?

M: Ithink it should, but I don’t understand why it’s not, why it keeps coming out
with 1/5"

rather than 1/3%,

I:  Alright, what is that “3/10ths” 3/10ths of?
Uhh, hmm 3/10ths of the entire population
Alright, and those are people, right?

Hmm hmm (nods)

Now, if you took 3/10ths of the 2500 repetitions you’re taking 3/10ths of
what?

l PME Probability & Stats 1311 @ 9/27/02, 12:54:21 PM I
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M: Of the uhh...people sampled (chuckles)
I: No, 3/10ths of the samples.

M: Oh. Hmm hmm

Segment 1 of the excerpt suggests that student M expected the simulation to
produce an amount (number) of samples and that he expected the percentage of that
amount to hover around the sampled population percent (30%). Segment 2 illustrates
his surprise at finding the actual percent being 20% of the 1000 samples generated.
In segment 3 the student anticipated the same (20%) result for a simulation involving
a larger number of samples, but he did not understand why this should be so because
his conviction was that the simulation should produce a numerical value close to the
sampled population percentage. The remainder of the segment reveals that student M
had been interpreting the simulation’s result as a percentage of people sampled rather
than as a percentage of samples.

During such instructional activities most students experienced great difficulty
conceiving the re-sampling process in terms of distinct levels. They would often
unwittingly shift from speaking and thinking of a number of people in a sample to
a number of samples selected. Their control of the coordination between the various
levels of imagery was unstable; from one moment to the next their image of a number

& of samples (of people) seemed to easily dissolve into an image of a total number of &
people. These difficulties led many students to misinterpret a simulation’s result as
being about a percent of people rather than about a percent of sample proportions.
This muddling of the different levels of the resampling process, in turn, obstructed
their ability to imagine how sample proportions might distribute themselves around
the underlying population proportion.

A salient consequence of these students’ difficulty in imagining a sampling distri-
bution was their tendency to judge a sample’s representativeness only in relation to the
underlying population proportion. Their image of sampling did not entail a sense of
variability that extended to ideas of distribution: they understood that sample statistics
vary, but only to the extent that if we were to draw more samples and compute statistics
from them, those statistics would differ from the ones for the samples already drawn.
Thus, judgments of a particular sampling outcome’s unusualness were based largely
on how they thought the outcome compared to the underlying population parameter
per se, instead of on how it might compare to the way similar sample statistics were
clustered around the parameter.

On the basis of such characteristics, we conjecture that these students’ encompass-
ing image of sample was additive — that is, in these instructional settings they tended
to view a sample simply as a subset of a population and to view multiple samples as
multiple subsets.

A contrasting image of sample is suggested in the following excerpt of student D
explaining the purpose of simulating resampling:
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D: If like...if you represent-- if you give it like the split of the population and
then you run it through the how-- number of samples or whatever it’ll give
you the same results as if-- because in real life the population like of America
actually has a split on whatever, on Pepsi, so it’ll give you the same results as
if you actually went out, did a survey with people of that split.

I: Ok, now. What do you mean by “same results”? On any particular survey at
all--you’ll get exactly what it-?

D: No, no. Each sample won’t be the same but it’s a...it’d be...could be close,
closer...

I. What’s the “it” that would be close?

D: If you get...if you take a sample...then the uh...the number of like whatever,
the number of “yes”s would be close to the actual population split of what it
should be.

I:  Are you guaranteed that?

D: You’re not guaranteed, but if you do it enough times you can say it’s within
like...1 or 2% of error depending upon uh how many times-- I think-- how
many times you did it.

@ The resemblance between sample and population was clearly foremost in stu- @
dent D’s mind, but his image was of a fuzzy resemblance bound up with ideas of
variability and proto-distributional images of a collection of sample proportions. He
did not expect a sample to be an exact replica of the sampled population, instead he
anticipated that in repeating the sampling process many sample proportions would be
“more or less” close to the population proportion. Moreover, student D’s confidence in
a sample’s representativeness was based on this anticipated image of how a collection
of similar sample proportions might be distributed around the population proportion.

We put that student D’s description is consistent with his having conceived a
sample as a quasi-proportional mini version of the sampled population, where the
“quasi-proportionality” image comes from anticipating a bounded variety of out-
comes, were one to repeat the sampling process.

It is often useful to refer to a germinating idea with suggestive terminology; we
call this image of sample a multiplicative conception of sample (MCS) because its
constitution entails conceptual operations of multiplicative reasoning. An elaboration
of multiplicative reasoning (Harel & Confrey, 1994) is beyond the scope of this paper.
For the present discussion we draw on Inhelder and Piaget’s (1964) broad characteriza-
tion of multiplicative reasoning as conceiving an object (quantity) as simultaneously
composed of multiple attributes (quantities). For instance, conceiving a proportion
involves multiplicative reasoning when it entails comparing two quantities in such a
way as to think of the measure of one in terms of the measure of the other (Thompson
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& Saldanha, in press). An example is when one thinks of percentage as quantifying
a part of a whole in terms of the whole. This conception entails keeping both the part
and the whole simultaneously in mind and the ability to reciprocally relate and express
one in terms of the other. This is different from thinking of measuring a subpart of a
whole only in absolute terms.

We hypothesize that MCS entails multiplicative operations on several levels: on
one level it entails conceiving a relationship of proportionality between a sample and
a population. On another level, imagining the emergence of a proto-distribution of
sample statistics entails structuring statistics as subclusters of the range of an entire
collection of statistics. This involves fractional reasoning. Finally, a mature and well
articulated image of distribution supports quantifying the expectation of a particu-
lar kind of sampling outcome and thus quantifying one’s confidence in a sampling
outcome’s representativeness. This entails the operation of juxtaposing the individual
sample result against an aggregate of similar sample results to compare the one against
the many — an image of simultaneity that is central to multiplicative reasoning.

Conclusion

Though our elaboration of these two images of samples and sampling is empiri-
cally grounded, our point in presenting it is not to imply that students in our experi-

@ ment fell into one or the other camp. Rather, our point is to highlight two significantly @
different conceptions and images of samples and sampling — perhaps exemplary of
extremes in a continuum of students’ conceptions — that provide insight into what
may be more or less powerful conceptions to target for instruction.

From our perspective, there are two reasons why the distinction between the
additive and multiplicative conceptions of sample is significant. First, in contrast
to the additive conception, MCS entails a rich network of interrelated images that
supports a deep understanding of statistical inference. In practice, statistical infer-
ences about a population are typically made on the basis of information obtained
from a single sample randomly drawn from the population. This practice is common
among statisticians despite expectations of variability among sampling outcomes. In
statistics instruction, however, it is uncommon to help students conceive of samples
and sampling in ways that support their developing coherent understandings of why
statisticians have confidence in this practice. We claim that MCS empowers students
to understand the why by orienting them to relate individual sample outcomes to dis-
tributions of a class of similar outcomes. In the same way, MCS enables students to
consider a sampling outcome’s relative unusualness. As such, we propose that MCS
characterizes a powerful “target” conception that can guide efforts to design instruc-
tional activities and student engagements intended to support their developing a deep
understanding of sampling and inference.

The second reason why we consider the distinction between these two concep-
tions of samples to be significant is that few of our students developed MCS. Instead,
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most students seemed to tend toward an additive image of sample. To us, this state
of affairs suggests that developing MCS is non-trivial. The reasons for students’ dif-
ficulties in this regard are currently unclear to us. However, one plausible hypothesis
grounded in our data is that for many students the simulation and sampling distribution
activities were of such a complexity so as to essentially overshadow ideas of sampling
variability highlighted in the first phase of the teaching experiment. In a subsequent
teaching experiment (Saldanha & Thompson, 2001) we took this hypothesis seriously
and engaged students in instructional activities designed to support their developing
a MCS.

Notes

'Research reported in this paper was supported by National Science Foundation Grant
No. REC-9811879. Any conclusions or recommendations stated here are those of the
authors and do not necessarily reflect official positions of NSF

BSimilar samples share a common size, selection method, and parent population.
Furthermore, they are selected to obtain information about a common population
characteristic.

“The simulation was of sampling people’s preference for a particular musician from a
hypothetical population having a known proportion of it preferring the musician’

@ SWe note that student D’s prediction of the simulation result was highly inaccurate @
in this excerpt. Shortly thereafter, however, he quickly revised his prediction with a
highly accurate one and continued to make such accurate predictions throughout the
rest of the interview. We thus believe that his initial prediction was not an indication
of a poor sense of how the sample proportions were distributed, rather it was merely
the result of his focus, in the moment, on explaining how the simulation worked and
what it generated.
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